Tag: soil maps

Iowa Soil Property Maps (gSSURGO)

The rasters originate from the Gridded SSURGO (gSSURGO) database, a National Cooperative Soil Survey (NCSS) SSURGO product in the format of an Environmental Systems Research Institute, Inc. (ESRI®) file geodatabase. Both SSURGO and gSSURGO are considered products of the NCSS partnership. SSURGO generally has the most detailed level of soil geographic data developed by the … Continue reading Iowa Soil Property Maps (gSSURGO)

Selected highlights in American soil science history from the 1980s to the mid-2010s

Despite the soil science discipline in the USA hitting hard times in the 1980s and 1990s, there were still many positive advances within soil science in the USA during these two decades. There was an increased use of geophysical instrumentation, remote sensing, geographic information systems (GIS), and global positioning systems (GPS), and research began in digital soil mapping, all of which lead to better understanding of the spatial distribution and variability of soils. Digital soil mapping is being incorporated into the National Cooperative Soil Survey, and the impact of humans on the soil system is being fully recognized. The expansion of soils into new areas and widening recognition of the importance of soils gives the field hope for a bright future in the USA.

History of soil geography in the context of scale

Categories of cartographic scale correspond to the selection of environmental soil predictors used to initially create historical soil maps. Paradigm shifts in soil mapping and classification can be best explained by not only their correlation to historical improvements in scientific understanding, but also by differences in purpose for mapping, and due to advancements in geographic technology. Although the hierarchy of phenomena scales observed in this study is generally known in pedology today, it also represents a new view on the evolution of soil science.

Soil mapping, classification, and pedologic modeling: History and future directions

Soil mapping, classification, and pedologic modelling have been important drivers in the advancement of our understanding of soil. Advancement in one of these highly interrelated areas tend to lead to corresponding advances in the others. Traditionally, soil maps have been desirable for purposes of land valuation, agronomic planning, and even in military operations. The expansion of the use of soil knowledge to address issues beyond agronomic production, such as land use planning, environmental concerns, energy security, water security, and human health, to name a few, requires new ways to communicate what we know about the soils we map as well as bringing forth research questions that were not widely considered in earlier soils studies.

The historical role of base maps in soil geography

This paper reviews the historical development of base maps used for soil mapping, and evaluates the dependence of soil mapping on base maps. Formerly, as a reference for spatial position, paper base maps controlled the cartographic scale of soil maps. However, this relationship is no longer true in geographic information systems. Today, as parameters for digital soil maps, base maps constitute the library of predictive variables and constrain the supported resolution of the soil map.

Drainage Index Grid (conterminous U.S.)

This raster contains the natural, inherent, soil wetness of the lower 48 states, as determined by the ordinally based Natural Soil Drainage Index (DI). The DI is intended to reflect the amount of water that a soil can supply to growing plants under natural conditions. It ranges from 0 for the very driest soils and exposed bedrock, to … Continue reading Drainage Index Grid (conterminous U.S.)

Productivity Index Grid (conterminous U.S.)

This raster describes the inherent, soil productivity of the lower 48 states, as determined by the ordinally based Natural Soil Productivity Index (PI). The PI uses family-level Soil Taxonomy information, i.e., interpretations of taxonomic features or properties that tend to be associated with naturally low or high soil productivity, to rank soils from 0 (least productive) to 19 (most … Continue reading Productivity Index Grid (conterminous U.S.)