Category: Manuscripts

Comparing Uganda’s indigenous soil classification system with World Reference Base and Soil Taxonomy

Kyebogola, S., C.L. Burras, B.A. Miller, O. Semalulu, R.S. Yost, M.M. Tenywa, A.W. Lenssen, P. Kyomuhendo, C. Smith, C.K. Luswata, M.J. Gilbert Majaliwa, L. Goettsch, C.J. Pierce Colfer, R.E. Mazur. Comparing Uganda’s indigenous soil classification system with World Reference Base and Soil Taxonomy. Geoderma Regional. doi: 10.1016/j.geodrs.2020.e00296.

A new depositional model for sand-rich loess on the Buckley Flats outwash plain, northwestern Lower Michigan

This landscape was originally interpreted as loess mixed with underlying sands. This paper re-evaluates this landscape through a spatial analysis of data from auger samples and soil pits. To better estimate the loamy sediment’s initial textures, we utilized “filtered” laser diffraction data, which remove much of the coarser sand data. Our new model for the origin of the loamy mantle suggests that the sands on the uplands were generated from eroding gullies and saltated onto the uplands along with loess that fell more widely.

Selected highlights in American soil science history from the 1980s to the mid-2010s

Despite the soil science discipline in the USA hitting hard times in the 1980s and 1990s, there were still many positive advances within soil science in the USA during these two decades. There was an increased use of geophysical instrumentation, remote sensing, geographic information systems (GIS), and global positioning systems (GPS), and research began in digital soil mapping, all of which lead to better understanding of the spatial distribution and variability of soils. Digital soil mapping is being incorporated into the National Cooperative Soil Survey, and the impact of humans on the soil system is being fully recognized. The expansion of soils into new areas and widening recognition of the importance of soils gives the field hope for a bright future in the USA.

Towards mapping soil carbon landscapes: Issues of sampling scale and transferability

This study examines the spatial patterns and accuracies of predictions made by different spatial modelling methods on sample sets taken at two different scales. These spatial models are then tested on independent validation sets taken at three different scales. Each spatial modelling method produced similar, but unique, maps of soil organic carbon content (SOC%). Kriging approaches excelled at internal spatial prediction with more densely spaced sample points.

History of soil geography in the context of scale

Categories of cartographic scale correspond to the selection of environmental soil predictors used to initially create historical soil maps. Paradigm shifts in soil mapping and classification can be best explained by not only their correlation to historical improvements in scientific understanding, but also by differences in purpose for mapping, and due to advancements in geographic technology. Although the hierarchy of phenomena scales observed in this study is generally known in pedology today, it also represents a new view on the evolution of soil science.

Soil mapping, classification, and pedologic modeling: History and future directions

Soil mapping, classification, and pedologic modelling have been important drivers in the advancement of our understanding of soil. Advancement in one of these highly interrelated areas tend to lead to corresponding advances in the others. Traditionally, soil maps have been desirable for purposes of land valuation, agronomic planning, and even in military operations. The expansion of the use of soil knowledge to address issues beyond agronomic production, such as land use planning, environmental concerns, energy security, water security, and human health, to name a few, requires new ways to communicate what we know about the soils we map as well as bringing forth research questions that were not widely considered in earlier soils studies.